Quantitative Formation of Coordinated Hydroxamate (2-) Ligands by Attack of Pecfluorocarboxylic Acids on [Os(NO),(PPh,),] ; **the X-Ray Crystal Structure of** $[Os[ON:C(O)CF₃](O₂CCF₃)(NO)(PPh₃)₂]$

BARRY HAYMORE, JOHN C. HUFFMAN

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Ind 47405, U.S A

ALAN DOBSON and STEPHEN D. ROBINSON

Department of Chemzstry, King's College, Strand, London WC2R 2LS. U.K.

Received June 30,1982

Current interest in the reactions of coordmated nitric oxide ligands, in particular those leading to formation of nitrogen-carbon bonds [l] , prompts this report of a novel reaction mvolving quantitative formation of trifluoroacetohydroxamate(2-) hgands, $CF₃C(O)$:NO, by attack of trifluoroacetic acid on $[Os(NO)₂(PPh₃)₂]$. Treatment of $[Os(NO)₂(PPh₃)₂]$ with a ten-fold molar excess of trifluoroacetic acid in boiling toluene over a period of 30 min. affords an essentially quantitative yield $(95-99\%$ by ^{31}P NMR) of an air-stable, orange complex which crystallises from methanol/toluene in 87-92% yield. The infrared spectrum of the product shows bands attributable to monodentate carboxylate ligands $(1689 \text{ and } 1401 \text{ cm}^{-1})$ and triphenylphosphine together with strong bands at 1818 and 1609 cm^{-1} . MR data are ${}^{31}P{^1H} - 7.4(d)$ and $-13.6(d)$ ppm, $J(PP') = 11.9$ Hz; ^{19}F , 94.3(s) and 87.7(s) ppm*. Pentafluoropropionic acid affords an analogous product with similar yield and spectroscopic properties. Since chemical and spectroscopic evidence alone did not permit identification of these products an X-ray diffractive study was undertaken. The structure of the trifluoroacetic acid derivative was determined at -160 °C using a well-formed bright orange solvated crystal (dimensions $0.12 \times 0.13 \times 0.13$ mm) grown from methylene chloride/methanol.

Crystal data: $C_{40}H_{30}F_6N_2O_5O_5P_2 \cdot CH_2Cl_2$. F Wt $= 984.81 + 84.94$ triclinic, space group \overrightarrow{PI} , $a =$ 12.709(3), $b = 22.694(8)$, $c = 9.662(3)$ $\mathbf{A}, \alpha =$ 118.282(3), β = 113.593(3), γ = 59.659(4)°, U = 2070.1 $\mathbf{\hat{A}}^3$, $\mathbf{D}_{\text{calc}} = 1.720 \text{ g cm}^{-3}$, $Z = 2$, $\mu(\text{Mo-K}_{\alpha}) =$ 33.7 cm^{-1} .

Data was collected using a Picker gomostat. The structure was solved by a combination of direct methods and Fourier techniques. Hydrogen atoms were included as fixed atom contributors $(dC-H =$ 0.95 Å, $B_{iso} = 4.0 \text{ Å}^2$, phenyl carbons were assigned isotropic thermal parameters and all other atoms anisotropic thermal parameters in the full-matrix refinement. Final residuals are $R(F) = 0.051$ and $Rw(F) = 0.049$ for 4730 independent reflections with $I > 2.33$ o(I).

The crystal contains molecules of the neutral six coordinate osmium(II) complex $[Os{ON:C(O)CF_3}].$ $(O_2CCF_3)(NO)(PPh_3)_2$ and dichloro-methane solvent in a 1/1 ratio. The most noteworthy features of the complex (Fig. 1) are the chelating $O.O'$ -trifluoroacetohydroxamate(2-) ligand and the strained cis disposition of the two bulky triphenylphosphine hgnds $(LP_1 - Os-P_2 = 106.51(8)°)$. The hydroxamate ligand is unequivocally bound through both oxygen atoms and the carbon-nitrogen (C_2-N_2) distance $(1.277(11)$ Å) is very close to that expected for a carbon-nitrogen double bond. The other bond angles and distances (Fig. 1) are similar to those found in related structures [2, 3]. In the light of this structure the infrared bands at 1818 and 1609 cm⁻¹ can be attributed to $\nu(NO)$ and $\nu(C=N)$ respectively.

To account for the formation of the hydroxamate hgand we postulate a reaction mechanism mvolving

^{*}NMR spectra were taken in CH_2Cl_2 or CD_2Cl_2 at 25 °C and are referenced to external 85% H₃PO₄ (³¹P) and internal C_6F_6 (¹⁹F). More positive chemical shifts indicate lower field. Descriptions of spectra ignore long range fluorinephosphorus couplings $5J(PF) = 1.0$ to 1.5 Hz seen when the phosphine ligand is *trans* to a fluorine containing group.

successive protonations at a nitrosyl ligand to yield $[Os(O₂ CCF₃)₂(NHOH)(NO)(PPh₃)₂]$ followed by an mtramolecular condensation between the NHOH ligand and the carbonyl group of a O_2CCF_3 ligand (Scheme). Sampling of the gases over the reaction mixture established the liberation of water during the reaction and the absence of dihydrogen. Narrow band 1H decoupled $(C_6H_5)^{31}P NMR$ spectra of the reaction mixture failed to detect any evidence of osmium hydrrdo intermediates (no P-H couplings). The protonation steps leading to formation of $[Os(O₂ CCF₃)₂(NHOH)(NO)(PPh₃)₂]$ parallel the known formation of $[OsCl₂(NHOH)(NO)(PPh₃)₂]$ from $[Os(NO)₂(PPh₃)₂]$ and HCl [4]. Experimental evidence supporting the presence of $[Os(O_2CCF_3)]$. $NHOH)(NO)(PPh_3)_2$ as an intermediate is rovided by ³¹P NMR spectra of $[Os(NO)_2(PPh_3)_2] /$

 $CF₃COOH$ solutions in cold toluene which display a strong singlet signal (δ = -10.5 ppm) very close to that observed for $[OsCl₂(NHOH)(NO)(PPh₃)₂]$ (δ = -8.7 ppm). Treatment of the corresponding ruthenum complex $[Ru(NO)_2(PPh_3)_2]$ with trifluoroacetic acid in boiling toluene afforded $\left[\text{Ru}(\text{O}_2, \text{O}_2)\right]$ CF_3 ₃(NO)(PPh₃)₂] in good yield together with olable quantities of $[NH_3OH] [O_2CCF_3]$. No evidence of a ruthenium hydroxamate product was found. Presumably in the ruthemum system further protonation leading to formation and liberation of $NH₂OH$ takes precedent over the intramolecular condensation step. Further chemical studies on the chemistry of these systems are m progress.

Acknowledgement

We thank the Marshall M. Wrubel Computing Center at Indiana University for computing time.

References

- J. A. McCleverty, *Chem. Rev., 79, 53* (1979).
- 2 B. L. Haymore and J. A. Ibers, *Inorg. Chem.*, 14, 2610 (1975).
- B. L. Haymore and J. A Ibers, Inorg **Chem ,** *14, 3060 (1975).*
- K. R. Grundy, C. A. Reed and W. R. Roper, J. *Chem. Sot Chem.* Commun, 1501 (1970).